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The method of constructing a quantitative structure-property relationship to estimate the glass transition 
temperature (Tg) from conformational entropy and mass moments has been extended to take into account 
intermolecular interactions. The intermolecular energies are estimated by driving probe units about torsion 
angle units. The average interaction energy between a probe and the torsion angle unit is taken as a 
molecular descriptor used in conjunction with entropy and mass moment to construct the quantitative 
structure-property relationships (QSPR). Three types of probe units have been considered, CH3, O-, and 
H ÷. QSPRs have been constructed for Tg using 35 polymers, and for the melt transition temperature (Tin) 
using 30 polymers. The QSPRs are formulated by performing multidimensional linear regression analysis 
between observed Tss (Tins) and the calculated molecular descriptors. A very significant QSPR involving 
backbone and side chain entropies, backbone mass moments, and the intermolecular energies of the O- 
and H ÷ probes could be constructed for the glass transition data. It was not possible to formulate a 
significant QSPR for Tin. This may be due to the spatial anisotropic nature of a polymer crystal v e r s u s  

a polymer glass. 
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I N T R O D U C T I O N  

In a recent paper t we were able to develop quantitative 
structure-property relationships, QSPRs, which relate 
the glass transition temperature, Tg, to the intramolecular 
flexibility of the polymer chain. Intramolecular flexibility, 
in turn, is quantitatively represented by a linear com- 
bination of backbone and side chain contributions, 
respectively, to the intramolecular conformational entropy 
and mass moment of the chemical repeat unit, normally 
the monomer.  Conformational entropy is computed from 
the Boltzmann distribution of conformational energy 
states arising from torsion rotations about backbone and 
sidechain bonds. The mass moments are currently taken 
to be the same as the backbone and individual sidechain 
masses associated with a monomer (chemical repeat) 
unit. The use of the principal moments of inertia of 
backbone and sidechains is being considered as an 
alternative to masses. 

The current Tg model does not consider contributions 
from intermolecular interactions to the glass transition 
process. The neglect of intermolecular interactions in 
estimating Tg has been justified by assuming that the 
polymer geometry of the glassy state is locally non- 
ordered, leading to a spatially orthotropic intermolecular 
energy field over the length of any individual polymer 
chain. However, in one of the QSPRs the Tg of 
poly(hexamethylene adipamine) is underestimated by 
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about 77K. We believe this is a direct consequence of not 
taking into account intermolecular hydrogen bonding 
that can occur in the glass for this particular polymer. 
Moreover, the overestimation of the Tg of poly(iso- 
butylene) by 68K for the same QSPR may be due to 
neglecting poor  local packing of chain segments which 
results in a loss of stabilizing interchain dispersion energy 
relative to other polymers. Hence, it would be useful to 
be able to estimate intermolecular interactions as might 
occur in the glassy state. 

We are also interested in determining the extent to 
which the current formalism developed to estimate Tg 
can be extended to construct QSPRs for the polymer 
crystal to melt transition temperature, T m. The observed 
relationships between Tg and Tm in many families of 
polymers 2 makes this extension of the formalism an 
obvious goal. However, it is quite clear from lattice 
packing energy calculations 3 that the medium surrounding 
a polymer chain in a crystal is much less orthotropic with 
respect to intermolecular interactions, than the glassy 
matrix of a polymer. 

Thus, the major methodology goal of this paper is the 
development of a simple molecular modelling scheme to 
estimate intermolecular interactions that will complement 
intramolecular entropy and mass moment in developing 
QSPRs for both T~ and Tm. 

M E T H O D S  

The key component to being able to efficiently estimate 
intramolecular entropy and mass moment is the represen- 
tation of the polymer in terms of torsion angle units. A 
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torsion angle unit is schematically defined as: 

Gi ~ Gi+l 

where Gi and G~+ 1 are structural groups connected by a 
bond about which the torsion angle O~ occurs. The 
polymer is built up by connecting torsion angle units 
together such that the 'right' structural group of the ith 
torsion angle becomes the 'left' structural group of the 
i+ 1 torsion angle unit. Figure I illustrates the structure 
of a linear polymer in terms of torsion angle units. 

Torsion angle units permit a global molecular property 
of a polymer system to be computed as a scalar sum of 
the individual molecular properties of the constituent 
torsion angle units. That is, we have formulated the 
estimation of global molecular properties in terms of a 
group additive property (GAP) model 2. The global 
molecular properties can be correlated to macroscopic 
properties of the system, in this case Tg and Tm, to 
hopefully yield a QSPR. 

The major limitation of GAP models is that the 
requisite GAP parameters to make an estimation of a 
property are not always available. Thus, while the 
calculation of the global molecular property is straight- 
forward, it cannot be done because of the missing data. 
However, the formulation of a GAP model using torsion 
angle units permits the application of molecular modelling 
methods to estimate the GAP parameters associated with 
any torsion angle unit. Thus, one only needs to know, 
or develop, a scheme to compute the requisite group 
additive properties using molecular modelling to insure 
being able to parameterize any torsion angle unit. 
Moreover, once the GAP properties are computed for a 
torsion angle unit, they can be stored in a database and 
used whenever the torsion angle unit turns up in a study. 
Overall, the marriage of molecular modelling and GAP 
approaches, and their joint application to define torsion 
angle unit properties, provides an open-ended, general 
approach to estimate macroscopic polymer properties. 

It should be pointed out that the torsion angle unit used 
here is one-dimensional (one degree of conformational 
freedom) in torsion angle, ®i, when bond lengths and 
angles are held constant, which is the case in our 
formalism. This representation of the torsion angle unit 
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Figure 1 Schematic representation of a linear polymer monomer unit 
in terms of backbone, BB~, and sidechain, SCij, structure groups which, 
in turn, define the component torsion angle units of the monomer 

is not a restriction. Higher dimensional torsion angle 
units can be defined if needed. For example, 

SGi_I ~,O SG, ~ - ~  SG,+I 

defines a two-dimensional torsion angle unit. Obviously, 
the computational effort needed to compute the molecular 
properties increases with dimensionality. However, the 
coupling of structural units composing the polymer chain 
also increases which should enhance the estimation of 
molecular properties. The polymer chain can also be 
decomposed into arbitrary sequences of torsion angle 
units of different dimensions. 

Computational procedures to determine intramolecular 
entropy and mass moments of torsion angle units have 
been formulated and carried out x. Table I contains the 
intramolecular entropies and mass moments for many 
torsion angle units. 

A molecular modelling scheme to estimate inter- 
molecular energies for torsion angle units is developed 
as part of this paper. The estimation of intermolecular 
energetics follows from the estimation of potential energy 
fields about a molecule 4, which is a molecular mechanics 
based generalization of the electrostatic potential field of 
a molecule 5. 

The geometry for computing intermolecular energetics 
of the one-dimensional torsion angle unit is shown in 
Figure 2. An intermolecular probe unit is placed a 
perpendicular distance d* from the geometric centre of 
the bond, C i, between the two structure groups, Gi and 
Gi+ 1. The angular location of the probe relative to Ci is 
equivalent to ®i, and is initially taken to be arbitrary. 
However, d* always corresponds to the minimum distance 
from C~ such that no steric violations occur between the 
probe and the atoms of the torsion angle unit. Once this 
distance, d*, is identified by systematically increasing the 
radial distance, d, from C~ at Ad increments, the energy 
between the probe and the torsion angle unit is minimized 
with respect to d starting at d*. The probe and the torsion 
angle unit energetics is taken to be the sum of the 
non-bonded steric and electrostatic components of a 
molecular mechanics force field 6 as given by equation (1). 

i=1 L \  ri r rip / \ I;rip / J  

In equation (1), ®i is fixed, and E(O i, d) is minimized to 
dmi, as a function of d. The first two terms in parentheses 
in equation (1) constitute the non-bonded steric potential 

Gi 

P 
d 

O ° 

f/2 

"•0 Gi*l 
Figure 2 Geometry used to compute the intermolecular energies of 
torsion angle units. See text for definition of symbols 

POLYMER, 1989, Vol 30, January 117 



Molecular modelling of polymers: M. G. Koehler and A. J. Hopfinger 

Table 1 Torsion angle units and corresponding mass moments, M(0), conformationat entropies, S(0), and intermo]ecular probe energies (ED), 
<E+>, and  <E_> 

Tors ion  angle 

unit  

-{-X 3~- CH2-]- MtO) S(O) <ED) <E+) <E_) 
and - [ -CH 2 " i ~  X-:J-- (a .m.u.)  (cal K - '  tool -1 ) (kcal tool -1 ) (kcal t o o l - ' )  (kcal mo1-1 ) 

X =  

X = 

R = 

X =  

- C H  2- 14.0 4.30 -- 1.39 0.45 -- 0.26 

- O -  15.0 3.33 - -0 .86 - 1.53 0.69 

O 
II 

- C -  21.0 0.78 - 1.66 - 2 . 1 9  - 0 . 3 6  

O 
II 

- C - O -  29.0 2.17 - 2.08 - 2.69 - 0.49 

O 
II 

- O - C -  29.0 2.17 - 2.16 - 2.55 0.30 

-S-  23.0 2.28 - 1.89 - 0.89 - 0.42 

_ 5 0  2_ 39.0 0.68 - 2.75 - 3.25 - 1.08 

O 
II 

- C - N H -  28.5 1.16 - 2 . 1 6  - 4 . 4 5  - 4 . 1 6  

O 
II 

- N H - C -  28.5 1.30 - 2 . 1 6  - -4 .22 --4.39 

" - ~  45.0 0,67 -- 3.44 - 0.96 --0.48 

- - ~  45.0 0.76 - 3.18 -- 0.88 - 0.5 1 

- C H ( O H ) -  22.0 1.48 -- 1.83 - 0 . 8 0  - 1.88 

- C H F -  24.0 1.69 - 1.52 --0.81 --0.38 

- C H C I -  31.0 0.80 -- 1.93 - 0 . 9 0  - 0 . 4 6  

_CF 2- 32.5 1.48 -- 1.69 - 1.27 - 0 . 1 6  

,CC12_ 48.0 0.84 - 3.00 - 1.19 - 0.20 

- C F C I -  39.5 0.90 - 2 . 2 0  - 1.36 - 0 . 3 8  

CH ( R ) 
0 
II -C-O- 23.6 2.38 - 1.83 - 2 . 9 3  0.66 

_CH 3 14.0 3.06 - 1.51 0.51 --0.37 

- C H  2" 12.0 2.92 - 1.44 0.46 - 0.29 

- O -  14.5 3.29 --0.89 - 1.72 0.83 

O 
II 

- C -  18.3 1.17 - 1.57 - 2 . 3 3  - 0 . 4 6  

--• 34.3 1.00 - 3.26 - 1.09 - 0.59 

- •  34.3 1.03 - 3.31 - 0.69 -- 0.45 

-S-  19.7 3.41 - 1.75 --0.77 - -0 .49 

, 5 0  2- 30.3 0.57 - 2.58 - 3.46 - 1.37 

O 
II 

- C - N H -  23.3 1.46 - 2.03 - 2.67 - 2.05 

O 
II 

- N H - C -  23.3 2.03 -- 1.95 -- 1.87 - 2 . 4 3  

O 
\ II ( a )  
/-CbH ~J-'~ C -  20.5 0.68 - 1.60 - 1.39 - 0 . 4 4  
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Tors ion  angle  

unit  

-EX ~ C H 2 ~  

and % C H  2 i ~  X-]. 

M(O) S(O) < Eo> <E+> ( E _ >  

(a.m.u.) ( c a l K  l m o  I 1) ( k c a l m o l  1) ( k c a l m o l - l )  ( k c a l m o l  1) 

\ 

/ C b H  - 5  O-  

O 
II )%. -5-3- c - o -  

o 
\ II 

O 
\ II 
cb(cH 3) -5 C-e- 

(b) 
-O - - ~  CH 3 

CH 2 ~ CH 3 

O 
II 

- C - O  - - ~  CH 3 

14.5 2,17 0.92 1,43 - 0.67 

28.5 0.83 1.83 - 1,59 - 0 . 2 7  

28.5 0.96 1.70 - 1.45 - 0 . 5 6  

13.5 1.45 - 1,26 +0 .29  - 0 , 4 0  

27.5 0.40 - 1.72 - 2 . 8 9  - 0 , 7 2  

15.5 4.72 - 0 . 9 5  - 1.43 0.46 

14.5 4.33 - 1.30 0.40 - 0 . 3 1  

29.5 3.00 - 2 . 1 3  - 2 . 5 1  0.35 

-CH 2 - - ~  C ( C H 3 ) X -  

and  

-C(CH3)X ] - ~  CH 2- 

X : -CH 3 

O 
II 

-C-O- 

O 
II 

-C- 

28.0 1.22 - 2 . 5 0  +0 .77  - 0 . 6 6  

28.3 0.76 - 2 . 8 3  - 1.89 - 0 . 5 2  

23.3 1.17 - 2 . 5 9  - 1.58 - 0 . 6 3  

X = - 0 -  46.0 0.65 2.89 - 1.09 0.17 

0 
II 

-C -  52.0 0.39 - 3.51 - 2.69 - 1.05 

O 
II 

- O - C - O -  68.0 0.48 - 4.09 - 3.05 - 0.23 

-C(CH3)  2- 59.0 0.57 - 4 . 1 6  +0 .53  - 0 . 8 2  

O 
II 

- O - C -  60.0 0.58 - 3.78 - 2.86 - 0.65 

O 
II 

- C - O -  60.0 0.58 - 3.46 - 2.98 - 0.79 

~CH~F~ - - ~  CH(F) -  32.0 1.06 - 1.36 - 1.03 - 0 . 5 2  

-CF  2 ~ CF(CI ) -  58.0 1.12 - 2 . 1 8  1.92 1.08 

O 
II 

. . [ ~ N H -  C -  59.5 0.66 -- 4.08 -- 2.05 -- 2.54 

O 
II 

~ C - N H -  59.5 0.60 -- 3.89 -- 2.60 -- 2.11 
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Table l Continued 

Torsion angle 
unit 

M(O) S(O) <ED> <E+) <E_> 
(a.m.u.) (cal K -  t mol - 1 ) (kcal mol - 1) (kcal mol - t ) (kcal mol -  1 ) 

O 

59.5 0.58 - 4 . 0 5  - 2 . 0 7  - 2 . 3 9  

O 

595 053 - 3 9 5  - 2 6 2  - 2 0 8  

O 
II 
C-O - ~  C(CH3) 3 50.5 1.37 - 3 . 5 2  - 1.06 +0.28 

CF 2 ~ CF 2 31.0 0.91 --1.96 --2.13 - 0 . 8 0  

ta} These torsion angle units define backbone-sidechain branching units 
~bj These torsion angle units terminate sidechains 

function with the Aip and Bin parameters taken from the 
set proposed by Hopfinger 6. The last term in parentheses 
in equation (1) is the electrostatic potential with the Qx 
the partial charges on the atoms and probe. The Q~ were 
computed from CNDO/2 calculations 7. The molecular 
dielectric, e, was set equal to 3.5 (ref. 6). 

Equation (1) does not necessarily give proper account- 
ing to intermolecular hydrogen bonding. However, the 
electrostatic term does very much dominate the favourable 
intermolecular energetics when atom i is a hydrogen bond 
donor/acceptor and the probe, p, is an accept®r/donor. 

When drain, and correspondingly, Ep(®i, dmin) , a r e  
determined for a given ®i, ®~ is increased by A®~, and 
the energy minimization of Ep(®~, d) repeated as a 
function of d. This cycle, in turn, is carried out over the 
360 ° available to ®v The resulting set of Ep(®i, dmi,) is 
then used to compute the average intermolecular energy, 
<Ep>i, for p which is taken to be a component descriptor 
for the intermolecular energy. 

<Up> i EY = 1 Ep(®i, dmin)j exp( - Ep(®i, dmia)j/RT) 
= Y~=I exp(- Ep(O~, clminb/gT) (2) 

In our analyses, A®~=30 ° so that N =  12; T was set to 
room temperature, 298K. In principle, the T in equation 
(2) should be treated as a variable in estimating Tg and 
Tin. However, conformational energy is independent of 
temperature for the fixed valence geometry approximation 
applied in this model. Moreover, the range in R T  for the 
Tg and Tm values considered is only about 0.8 kcal mol- 1. 
Since R T  appears in the same functional form in the 
numerator and denominator of equation (2) it has a very 
modest effect upon <Ep)~ over a range of only 0.8. Lastly, 
the <Ep)~ are correlation, as opposed to thermodynamic, 
properties. The (Ep>i are designed to reflect relative 
composite average values of intermolecular interactions. 
Thus, there is not a requirement for computational 
precision of these quantities with respect to temperature 
to yield a significant QSPR. 

The major difficulty in using the formalism reported 
here for estimating intermolecular interactions is in the 
selection of a probe, p, which meaningfully reflects the 
dominant type of intermolecular interactions at play in 

the polymer system of interest. There does not seem to 
be any definite solution to this problem. Thus, we were 
forced to take advantage of the statistical nature of 
constructing a QSPR. This is the same approach that 
was successfully employed in developing quantitative 
structure-activity relationships, QSARs, using potential 
energy fields for a set of 2,4-diaminobenzylpyrimidine 
inhibitors of dihydrofolate reductase 4. A probe to reflect 
non-bonded/dispersion interactions--a unified atom 
representation of a CH3 group s has been used in the 
intermolecular energy calculations. Probes to reflect 
electrostatic interactions with a positively charged group-- 
a hydrogen atom with a unit positive charge, and with 
a negatively charged group---an oxygen atom with a 
negative formal charge, have also been considered. The 
average interaction energies <ED> , (E+)  and (E_) ,  
respectively, of a torsion angle unit with these three 
probes have been determined. In turn, <ED), <E+ ), and 
<E_ ) have each been considered as independent correla- 
tion terms, along with the intramolecular conformational 
entropy and mass moments, to establish the QSPR. 

Multidimensional linear least-square regression 
analysis 9'1° has been used to construct the correlation 
equation representing the QSPR. A variety of functional 
representations of the selected independent variables 
have been considered for the QSPR. The optimum 
functional representation, based upon the statistical 
significance of fit for the regression analyses explored, 
has been found to contain only linear terms in the 
independent variables 

Tx = ~tSa + flMa + ~ [61Ss(i) + r~Ms(i)] 
i 

"~- gED-'[- p E +  -'[- ~ .£_  at-O) (3)  

In equation (3), x can be g or m for the glass or crystal melt 
transition, respectively. SB and Ss(i) are the backbone 
and the ith sidechain contributions to the monomer 
conformational entropy. MB and Ms(/) are the corre- 
sponding mass moments of the monomer backbone and 
the ith sidechain of the monomer unit (Figure I). ED, E + 
and E_ are the dispersion, positive electrostatic, and 
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negative electrostatic intermolecular energies for the 
complete monomer unit. 

The greek letters in equation (3) are the regression 
coefficients which indicate the relative importance of each 
molecular property in specifying Tx. Moreover, compari- 
son of the equivalent regression coefficients of the Tg and 
T m QSPR equations provide a means of assessing the 
relative importance of the molecular properties upon the 
two transition processes. 

The backbone entropy, S,, and mass moment, MB, are 
'normalized' with respect to the number of torsion angle 
units, no, composing the backbone of the monomer. It 
is to be noted that SB and M B include one-half contri- 
butions from each of the two torsion angle units joining 
a monomer unit to adjacent monomers on the left and 
right. The value of n o includes these two half torsion angle 
unit contributions and, thus, has a value one greater than 
the actual number of torsion angle units composing a 
monomer. 

Sa= 1 ~ si(® ) (4a) 
n 0 i= l  

1 .o 
Ms = ~ mi(O ) (4b) 

no i=1 

The terms si(®) and m~(®) are the ith torsion angle unit 
entropy and mass moment, respectively, as reported in 
Table 1. 

The entropy and mass moment of the ith sidechain of 
the monomer are also normalized by dividing each of 
these total respective quantities by the number of torsion 

angle units, ni, making up the ith sidechain. 

Ss(i)= ~1 ~ si,j(O ) (5a) 
hi j = l  

Ms(i )= 1 ~ mi,j(® ) (5b) 
ni j = t  

The terms si,j(O ) and ml,j(®) are the same as in equations 
(4a) and (4b) and obtained from Table I. 

The three intermolecular energies, ED, E+, and E_ are 
computed as the respective sums of (ED), (E+) ,  and 
( E _ )  for all backbone and sidechain torsion angle units 
composing the monomer divided by the number of such 
torsion angle units. 

1 1 
E y =  ~ ( E y > , - I - ~  ~ ( E v > h j  (6) 

no i=l i=1 nij=l 
In equation (6), Y can be D, + ,  or - and (Ev)i and 
(Ev)i,j are taken from Table 1. 

The normalization of the entropies, mass moments, and 
intermolecular energetics scales each of these properties 
to a single typical torsion angle unit characteristic of the 
polymer. This scaling, in turn, permits a meaningful 
comparison among polymers and the generation of 
QSPRs. 

RESULTS 

Table 2 contains one of the sets of polymers investigated 
along with the observed Tgs 2, conformational entropies, 
mass moments, and the three average intermolecular 

Table 2 Polymers, corresponding entropy, mass moment, and intermolecular energy descriptors, and the observed and calculated (using eq. (10)) Tg 
values as well as the differences, ATg, in observed and calculated values 

S. Ms Ss Ms /~t, E+ E_ T R (obs.) Tg (calc.) ATg 
No. Polymer (calmol 1K-l) (a.m.u.) (calmol I K - ' )  (a.m.u.) (kcalmo1-1) (kcalmol 1) (kcalmol 1) (K) (K) (K) 

1 -CH2-O- 3.33 15.0 - -0.86 - 1.53 0.69 188/243 220.9 22.1 

2 -(-CH2)2-O- 3.65 14.7 - - -1.04 -0.87 0.37 206/246 221.5 - 15.5 

3 -(-CH2)3-O- 3.82 14.5 - - 1.13 -0.54 0.22 195/228 210.6 17.4 

4 =(-CH2)4-O- 3.91 14.4 -1.18 -0.34 0.12 185/194 204.7 -10.7 

5 -(-CH2-)- 4.30 14.0 -1.39 0.45 0.26 143/250 176.9 33.9 

6 -CH2-CH(CH3)- 1.93 14.0 - 1.51 0.51 -0.37 238/299 249.0 11.0 

7 -CH2-CH(~ )- 1.00 34.3 - - 3.26 -1.09 -0.59 353/380 334.3 18.7 

8 -CH2-CH(F)- 1.70 24.0 - - 1.52 -0.81 -0.38 253/314 307.8 6.2 

9 -CH2-CF 2- 1.48 32.5 - 1.69 - 1.27 -0.16 238/286 325.6 -39.6 

10 -CH(F)-CH(F)- 1.06 32.0 -1.36 - 1.03 0.5 323/371 329.4 - 6.4 

11 -CH2-CH(CI)- 0.80 31.0 -1.93 -0.90 0.46 247/354 341.1 12.9 

12 -CF2-CF(CI)- 1.12 58.0 2.18 1.92 1.08 318/373 377.0 -4.0 

O O 
II r--'~ II 

13 -O-C O-Q0_/MC-O-(CH2) 2- 1.96 38.4 -2.59 -2,10 -0.22 346 351,2 -5.2 

14 @ C H 2 @ O - ~ - O -  0.58 56.5 -3.77 -2.00 -0.36 393/420 397.2 -4.2 

O 

15 A O ~ - C ( C H 3 ) 2 . . ~ O - ~ - O - 0 . 5 3  63.5 -4.13 -1.26 -0.53 414/423 381.1 32.9 

16 -CH2-~(CH3)-  

COOCH 3 

0.76 28.3 1.70 28.5 -2.38 -2.29 -0.41 378 353.8 24.2 
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Table 2 Continued 

S, MB Ss Ms Ev E+ E_ T, (obs.) T, (talc.) AT, 
No. Polymer ( e a l m o l - l K  -1) (a.m.u.) (ea l rno l - lK -1) (a.m.u.) (kcalmo1-1) (kcalmo1-1) (kcalrnol- ' )  (K) (K) (K) 

17 -CH2-CI (CH3)-  0.76 28.3 2.29 23.7 -2 .15 -1 .79 -0 .56  338 319.3 18.7 

COOCH2CH 3 

18 - C H 2 - ~ ( C H 3 ) -  0.76 28.3 3.95 15.7 - 1.59 -0 .14  -0 .34 288 258.6 29.4 

COO (CH 2) 15CH3 

19 -CH2-~(CH3)- 0.76 28.3 0.89 39.0 -2.72 - 1.93 -0.42 380 373.3 6.7 

COOC (CH 3 ) 3 

20 - C H 2 - C ( C H 3 ) -  0.76 28.3 0.49 43.7 -2.71 -2.41 -0 .69 385 393.9 -8 .9  

 oo® 
21 - C H 2 - C ( C H 3 )  2- 1.22 28.0 - - -2 .50 0.77 -0 .66 198/243 272.6 -29.6  

22 - C H 2 - C H ( O H ) -  1.48 22.0 - - - 1.83 -0 .80 - 1.88 343/372 332.1 10.9 

23 - C H 2 - C H ( C 2 H s ) -  2.92 12.0 2.89 14.0 - 1.36 0.40 -0 .32 228/249 218.2 9.8 

24 - C H 2 - C H ( C 3 H 7 ) -  2.92 12.0 3.36 14.0 -1 .37 0.41 -0.31 221/287 213.0 8.0 

25 - C H 2 - C H ( O C H 3 ) -  3.29 14.5 3.45 15.0 -0.91 - 1.58 0.36 242/260 242.2 -0 .2  

26 - C H 2 - C H ( O C H 2 C H 3 ) -  3.29 14.5 3.28 14.7 -0 .97 -1 .20  0.27 231/254 234.2 -3 .2  

27 - C H 2 - ~ H -  2.38 23.6 1.92 29.0 - 1.91 -2 .49 0.35 279/282 318.1 -36.1 

COOCH 3 

28 - C H 2 - ~ H -  2.38 23.6 2.44 24.0 - 1.77 - 1.95 0.05 251 283.3 - 32.3 

COOCH2CH 3 

29 - C H 2 - C H -  2.38 23.6 1.10 395 -2.25 -2.13 0.33 314 305.3 8.7 

COOC (CH 3 ) 3 

30 - C H 2 - ~ H -  2.38 23.6 3.19 20.0 -1.66 -1 .26 -0 .04  219 252.1 -33.1 

COO (CH 2 ) 3CH3 

O O 
II j--'x II 

31 - ( - C H 2 )  1 0 - O - C -  O ~ C - O -  3.40 23.4 - - - 1.84 -0 .54 -0.31 27.5 

O O 
II II 

32 -NH N H C  C -  

33 -N H- (CH2)6 -NH C-(CH 2 ) g - C -  

34 -CH2-CH- 

C6H15 

35 - C H 2 - ~ H  

O- (CH 2) 5CH3 

268/298 240.5 

0.59 59.5 - - -3 .97 -2 .34 2.25 411/428 438.4 27.4 

3.27 18.8 - - --1.65 -1 .16 -1.58 318/330 277.2 40.8 

2.92 12.0 3.83 14.0 - 1.38 0.43 -0 .29 208/228 207.8 0.2 

2.92 12.0 3.86 14.3 - 1.28 0.02 -0.21 196/223 216.9 6.1 

energies. In many cases, two observed T,s are reported 
for a particular polymer. The 7", value which best fits the 
QSPR equation was used in each QSPR analysis. In our 
initial investigation to predict 7", 1, in which intermolecular 
energetics were neglected, the following QSPR was 
established for 30 of the polymers in Table 2; 

Tg = - 35.18SB + 1.55MB -- 18.26Ss + 1.35M s + 327.30 

N = 3 0  R=0 .929  S D = 1 7 . 9  F = 3 9 . 5  (7) 

In equation (7) N is the number of compounds, R the 
correlation coefficient, SD the standard deviation of fit, 
and F the statistical significance of fit. The entropy terms 
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in equation (7) account for more than 70% of the variance 
in the Tg values. Thus, our initial thought was to delete 
the mass moment terms in equation (7), and to replace 
them with the intermolecular energy descriptors. This 
resulted in the following QSPR equation: 

Tg = - 21.46SB -- 9.83Ss-- 17.24E D -  29.97/~+ 

-- 18.12/~_ +263.84 (8) 

N = 3 5  R=0.912 SD=20 .2  F=28 .8  

The relative magnitude of the regression coefficients of 
equation (8) suggest that no descriptors can be deleted 
without compromising the integrity of the QSPR. More- 
over, a comparison of equations (7) and (8) suggest that 
the intermolecular energy terms do not fully compensate 
for the deletion of the mass moments. 

The decision to delete mass moments was based upon 
the statistical significance of the terms in equation (7), not 
conceptual understanding of the glass transition process. 
Conceptually, conformational entropy is associated with 
the thermodynamic component of the glass transition 
process, while the mass moments represent an attempt 
to account for the kinetic nature of the glass transition. 
Equation (8) only contains thermodynamic descriptors, 
and its marginal significance, relative to equation (7), 
indicates that mass moments are needed in the QSPR. 
Thus, we carried out a multidimensional linear regression 
analysis using all seven descriptors (SB, M~, Ss, Ms, ( E D ) ,  
( E + ) ,  and ( E _ ) )  for the 35 compounds whose Tg values 
are reported in Table 2. 

Tg = - 25.3S~ - 7.66S s + 1.40M B - 0.14M s - 0.77E o 

- 31.6E+ -- 24.4E_ + 275.17 (9) 

N = 3 5  R=0.959 SD=14.9  F=44 .0  

An analysis of the coefficients of the independent variables 
(molecular properties) in equation (9) indicates that the 
normalized mass of the side chain torsion angle units, 
and the intermolecular dispersion energy, make minimal 
contributions to the variance of Tg over the set of 
polymers given in Table 2. Thus, we carried out a 
multidimensional linear regression analysis without these 
two terms. This led to the most significant QSPR for Tg, 

Tg = - 27.3SB - 10.1Ss + 1.07M B - 29.3E+ - 15.1/~_ 

+288.83 (10) 

N = 3 5  R=0.954 SD=15.6  F=58 .9  

The predicted Tgs and differences with the observed 
values using equation (10) are listed in Table 2. The choice 
of the observed Tg for each compound used to construct 
equation (10) is obvious. Figure 3 is a plot of observed 
versus predicted Tgs based upon equation (10). 

The optimum QSPR equation to estimate Tm contains 
the same set of molecular properties as equation (10). 

T m = --  32.6SB-- 22.1S s -  2.51M a -  50.5E+ - 109.8E_ 

+493.7 (11) 

N = 3 0  R=0.907 SD=31 .6  F=22 .4  

However, it is clear from the R, SD, and F values that 
equation (11) is inferior for predicting Tr, as compared 
with equation (10) for predicting T 8. The set of polymers, 
corresponding molecular descriptors, and the observed 2, 
predicted, and differences in T m values are reported in 
Table 3. An inspection of the observed, predicted and 

difference Tm values suggests that there is no pattern to 
the errors in estimating Tin. Indeed, only 11 predicted Tm 
values are within ___ 20K of the observed Tm measure- 
ments. Eight predicted Tm values are more than ___ 50 K 
from the measured values. Figure 4 is a plot of observed 
versus predicted Tm values, and reflects the relatively 
high random scatter inherent to the predicted and 
observed Tm values. 

DISCUSSION 

Equation (10) suggests that it is possible to meaningfully 
estimate TgS in terms of conformational entropy, mass 
moments, and electrostatic intermolecular interactions. 
However, these molecular properties do not contribute 
uniformly to the specification of Tg. Thus, multidimen- 
sional linear regression Tg equations were generated for 
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Table 3 P o l y m e r s  used  to cons t ruc t  the Q S P R  given by  equa t ion  (11 ). The  descr ip tor  t e rms  have  the same mean ing  as  in Table 2. Tm is the crys ta l -mel t  
t r ans i t ion  t empera tu re  

No. Polymer 

SR 
( calm°l-~ MR Ss Ms /~r, E+ g T,, (obs.) T m [calc.)AT m 
K - ' )  (a.m.u.) (calmol ~K t) (a.m.u.) (kcalmol *) (kcalmo1-1) (kcalmol a) {K) (K) (K) 

1 - C H 2 - O -  3.33 15.0 

2 - ( C H 2 ) 2 - O -  3.65 t4.7 

3 - ( C H 2 ) 3 - O -  3.82 14.5 

4 - ( C H 2 ) 4 - O -  3.91 14.4 

5 - (CH2) -  4.30 14.0 

6 - C H 2 - C H ( C H 3 ) -  1.93 14.0 

7 -CH 2-CH ( ~)- 1.00 34.3 

8 - C H 2 - C H ( F ) -  1.70 24.0 

9 - C H 2 - C F  2- 1.48 32.5 

10 - C H 2 - C ( C H 3 )  2- 1.22 28.0 

11 - C H 2 - C H ( C I ) -  0.80 31.0 

12 - C F 2 - C F ( C I ) -  1.12 58.0 

13 -CH2-CI (CH3)-  0.76 28.3 
/ 

COOCH 3 

14 C H 2 - C H ( O C H 3 ) -  3.29 14.5 

15 - C H 2 - C H ( O C H 2 C H 3 ) -  2.92 12.0 

16 - C H 2 - ~ H -  2.38 23.6 

COO (CH 2)  3CH3 

O O 
II , ~ ,  II 

17 -(CH2 ) 10 -O-C ~-{O_/~-C-O- 3.40 23.4 

18 - C H 2 - C C I  2- 0.84 48.0 

19 - C F 2 - C F  2- 0.91 31.0 

20 - C H 2 - C H -  2.92 12.0 

C H 2 - C H  3 

21 -CH2-CI H-  2.92 12.0 

(CH 2 ) 5CH3 

22 C H 2 - ~ H  2.38 23.6 

O=C-O- (CH 2) 2-CH3 

O O 
II r--x II 

23 - - ( C H 2 ) 2 - N H C - ~ - C N H -  1.56 38.0 

O 

24 - ( C H 2 ) 2 - O -  I C I - ~  3.43 21.3 

o / 
II 

- O - C -  (CH 2) 10-O --j 

25 -CH2-CIH-  
/ 

O 
I 

( ~ H 2 )  9 

Ctt 3 

O O 
I1 r--~ II 

26 - ( C H 2 ) 2 - O - C - ~ - C - O -  

1.70 

3.45 

2.89 

3.19 

2.89 

-0 .86 -- 1.5 0.69 333/473 349.3 - 16.3 

- 1.04 -0.87 0.37 335/349 341.4 -6 .4  

-1.13 -0 .54 0.22 308 336.2 -28.2 

1.18 0.34 0.12 308/333 334.3 26.4 

1.39 0.45 0.26 410 324.5 85.5 

- 1.51 0.51 --0.37 385/481 410.7 70.3 

3.26 - 1.09 0.59 498/523 495.0 3.0 

1.52 -0.81 - (I.38 473 460.9 12.1 

-I .69 - I . 27  --0.16 410/511 445.8 -35.8 

-2 .50 0.77 -0.66 275/317 417.4 - 100.4 

1.93 -0 .90 0.46 485/583 485.9 -0 .9  

2.18 1.92 1.08 483/533 527.4 5.6 

28.5 -2.38 -2.29 0.41 433/473 521.2 48.3 

15.0 0.91 - 1.58 -0.36 417/423 393.5 23.5 

14.0 - 1.36 0.40 -0.32 359 319.8 39.2 

20.0 1.66 1.26 0.04 275/'317 354.8 - 37.8 

- 1.84 -0.54 0.31 396/411 385.7 10.3 

3.00 1.36 -0.38 463/483 456.5 6.5 

- 1.96 - 2.13 - 0.80 292/672 581.8 90.2 

14.0 - 1.36 0.40 0.32 379/415 319.8 59.2 

3.83 14.0 - 1.38 0.43 0.29 235 294.2 -- 59.2 

2.91 

3.29 14.5 4.02 

2.35 34.3 

21.5 -I .71 -1.55 0 388/435 371.2 16.8 

- 2.72 2.47 -- 2.59 728 756.8 28.8 

- 1.72 -0.48 0.10 338 363.9 -25.9 

14.2 - 1.23 -0.18 0.05 280 276.2 3.8 

2.39 - 1.67 -0.23 533/537 440.9 92.1 
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No. Polymer 

SB 
{calmol ~ M n 
K J) [a.m.u.) 

S s M s E o E.  E T,, (obs.) T., (calc.)AT m 
(calmol IK  ~) (a.m.u.) (kcalmol t) [kcalmol t) (kcalmol ~) (K) (K) (KI 

O 
II 

27 - ( C H 2 ) 4 - O - C - O -  

O O 
tl II 

2~ - N H - ( C H  2 ) 6 - N H C - ( C H  2)# -C-  

3.24 21.5 

3.27 18.8 

1.75 1.10 0.24 332 416.3 84.3 

1.65 1.16 1.58 523 545 572.2 49.2 

O O 
II II 

29 @ - ( C H 2 ) 2 - N H C - ( C H  2)t - C - N H -  

O O 
II tl 

30 - (CH2)  1 0 - O - C - ( C H 2 ) 8 - C - O -  

2.39 29.2 

3.87 17.0 

2.30 1.20 1.40 606 613 557.0 49.0 

1.53 -0.17 0.27 344,358 363.4 19.4 

all possible combinations of molecular properties in Table 
2. The minimum number of molecular properties was 
sought which yielded R>0.92,  SD<20 and F>50.0.  It 
was found that an equation involving only SB, E+ and 
E_ could satisfy these conditions. 

Tg= -- 35.3S~-29.9E+ -29.3E_ +321.7 (12) 

N = 3 5  R=0.923 SD=18.2 F=59.5  

One might dismiss equation (10) in favour of equation 
(12) for estimating Tgs as well as inferring mechanisms of 
molecular action in the Tg process. That is, one might 
not consider mass moments or side chain conformational 
entropy as important. This, however, is dangerous to do 
in that the size of our Tg data base is small-35 
compounds. Moreover, in the previous investigation to 
model Tg l it was found that the Tgs of a set of 
homologous polyacrylates and a set of homologous 
polymethacrylates could be explained solely in terms of 
side chain entropy and mass moments. Many more 
polymers need to be considered in generating a reliable 
universal T~ QSPR. However, it is probably fair to say 
that S,, E+ and E_ are the dominant molecular 
properties correlating with Tg. 

There is no obvious explanation why T m cannot be 
significantly correlated against some combination of S b, 
Mb, Ss, M s, ED, /~+, and /~_. If polymers in Table 3 
having an absolute difference in predicted and observed 
Tm s greater than 85K are deleted in constructing a QSPR, 
the following correlation is achieved 

T m = - - 2 8 . 9 S ~ -  17.5Sc- 1.54M~- 37.4E+ - 114.7E_ 
+459.4 (13) 

N = 2 6  R=0.959 SD=24.7 F=45.9  

Equation (13) is quite an improvement over equation (11 ). 
Unfortunately, the four polymers deleted in construction 
of equation (13) do not share any common features which 
might explain why it is more difficult to accurately predict 
Tm compared with Tg. The four deleted compounds are 
polyethylene, poly(isobutylene), polytetrafluoroethylene, 
and poly(ethylene terephthalate). Thus, it is not possible 
to propose what additional molecular features need to 
be considered in order to successfully predict Tms. 

One surprising finding is that T m is predicted to 
decrease as the normalized mass of the backbone 

monomer unit increases in both equations (11) and (13). 
This is the case since the regression coefficients are 
negative. The opposite is true for Tg. Intuition suggests 
that both Tg and T m should increase with normalized 
monomer mass. Since the regression coefficients for MB 
have a small absolute value, the mass terms make 
relatively small contributions to specifying Tg and T m. 
Hence, this discrepancy may not be meaningful and an 
artifact of the statistical fit. 

A comparison of the regression coefficients of equations 
(10) and (11) suggests that sidechain entropy and the 
electrostatic intermolecular energies are more important 
(the absolute values of the coefficients are larger) for 
specifying T m than Tg. The reference point is the backbone 
entropy whose regression coefficient does not change very 
much between equations (10) and (11). In particular, the 
coefficient of E+ changes by more than a factor of seven. 
It is not obvious why these specific changes are seen, but 
intuition would support intermolecular interactions being 
more important in maintaining a crystal than a glass. 
Moreover, sidechain entropy in a crystal might reflect 
the onset of disruption of both intrachain and interchain 
order since sidechains are in more intimate contact in a 
crystal than in a glass. This could explain the increased 
significance of S c in equation (11) as compared with 
equation (10). 

A probable reason for not being able to predict Tms 
as well as Tgs may be due to the anisotropic geometric 
environment inherent to a polymer crystal, in contrast to 
the orthotropic medium of a polymer glass. The molecular 
properties we have computed using one-dimensional 
torsion angle units better model the orthotropic environ- 
ment of a glass, than the anisotropic geometry surrounding 
a torsion angle unit in a polymer crystal. There is no 
allowance in the current model to consider the effects of 
direction-dependent intermolecular interactions. Specific, 
periodic lattice interactions which stabilize the crystal 
are not accounted for in the current model. We have seen 
in previous polymer crystal structure calculations 3 that 
the electrostatic interactions play a crucial role in 
specifying lattice geometry, especially the setting angles of 
the chains. This finding from lattice packing calculations 
can be taken as evidence that larger structural units, 
which build anisotropic molecular interactions into the 
model, are needed to generate significant T m QSPRs. 
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Thus, we plan to consider a follow-up QSPR analysis of 
the polymers in Table 3 using two, and higher dimensional, 
torsion angle units to estimate the entropies, mass 
moments,  and intermolecular energetics. 

In so far as the data sets are large enough to impart  
self-consistency in the regression equations, the approach 
taken here might be used to resolve which of two, or 
more, reported transition temperatures for a polymer is 
likely to be correct. That  has been done in the derivation 
of QSPR equations. When two observed T~, or T m, values 
are given, the observed value which maximizes the 
regression fit is used. Thus, molecular modelling may be 
of use in resolving conflicting experimental measurements. 

Lastly, there is certainly some uncertainty in each of 
the observed values of the Tgs and Tms regardless of 
whether one or two values are reported. Hence, it may 
be instructive to see how sensitive the QSPRs are to 
observed Tg and Tm values. This could be accomplished 
by repeatedly randomly perturbing the observed values 
for the transition temperatures some average amount ,  
and seeing how sensitive the resultant correlation 
equations are to the perturbation. This is another study 
that will be considered in the near future. 
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